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Abstract

In this paper, the stability and parametric resonances of supported pipes conveying pulsating fluid are studied via

numerical methods. According to the stability criterion derived, the effect of physical parameters of the system on the

regions of three parametric resonances is discussed. The amplitude–frequency response curves of the parametric

resonances and their frequency characteristics are investigated through numerical simulations. The results obtained

show that several motions can take place in the region of combination resonance, including quasiperiodic and combined

periodic motions. There exist some regions of overlap between the regions of the different resonances, and hence

different types of steady state response may occur at the same value of the exciting frequency o in these regions of

overlap. This phenomenon may lead to sudden changes in motion from one steady state response to another.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Pipes conveying steady flow may lose stability by divergence but cannot undergo oscillatory type instabilities (flutter)

if they are supported (pinned or clamped) at both ends (Holmes, 1978). However, a harmonically fluctuating flow may

cause the pipes to undergo another type of dynamic instability due to parametric resonances (Paı̈doussis, 1998).

Contributions on this problem include the works of Chen (1971), Ginsberg (1973), Paı̈doussis and Issid (1974),

Paı̈doussis and Sundararajan (1975), Ariaratnam and Namachchivaya (1986), etc. in the framework of linear analysis.

Experiments were conducted by Paı̈doussis and Issid (1976). Using the method of averaging, nonlinear analysis was

performed for the same problem by Namachchivaya (1989) and Namachchivaya and Tien (1989a,b). In these nonlinear

analyses the detuning of frequency, which describes the nearness of the exciting frequency to the frequency of

resonance, is a small parameter used in the method of averaging, and so their analytical solutions obtained are valid

only in a neighborhood of the resonances. Therefore, it would be of interest to investigate how far the regions of the

parametric vibrations can extend away from the resonance regions, and what behavior would occur in the regions of

nonresonance.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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In this paper, we analyze numerically the parametric resonances of the supported pipes conveying pulsating fluid. The

influence of the various parameters of the system on the regions of parametric resonance is investigated according to the

analytical expressions of stability boundaries derived. The amplitude–frequency curves of the parametric resonances are

studied through tracing the resonance curves numerically, with varying the exciting frequency from the region of

resonance to that of nonresonance.
2. Differential equation of motion and discretization

The systems considered are shown in Fig. 1.The pinned–pinned and clamped–clamped pipes conveying fluid are

considered to be vertical and to be subject to planar motions: yðx; tÞ. The pipe axis in the undeformed state coincides

with the x-axis, which is in the direction of gravity. The nonlinear terms considered here are only the additional axial

force induced by lateral motions of the pipes. Such a nonlinear equation of motion, given by Holmes (1977), is
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where EI is the flexural rigidity of the pipes, a the coefficient of Kelvin-Voigt viscoelastic damping of the pipe material, n
the Poisson ratio, eA the cross-sectional area of the pipe wall, g the acceleration due to gravity, T static tension in the

pipe, L the pipe length, and m its mass per unit length; M is the mass of the fluid conveyed per unit length, A the cross-

sectional flow area and U flow velocity in the pipe, and P the internal pressure at x ¼ L. Since the internal

pressurization, P, merely adds an additional constant tensile force to the external tension, T , one can take P ¼ 0

(Holmes, 1977).

Introducing the following nondimensional variables and parameters:
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Eq. (1) may be written in dimensionless form as

a_Z000 0 þ Z000 0 þ ½u2 � T þ ðMr _u � ḡÞð1� xÞ � g
Z 1

0

ðZ0Þ2 dx� 2ag
Z 1
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where ( )0 and ( 	 ) denote @ð Þ=@x and @ð Þ=@t̄, respectively. The fluid velocity is assumed to be harmonically fluctuating

and to have the following dimensionless form:

u ¼ u0ð1þ m cosðot̄ÞÞ, (4)
Fig. 1. Schematic of the system treated in this paper: (a) pinned–pinned pipe; (b) clamped–clamped pipe.
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where u0 is the mean flow velocity, m is the amplitude of the harmonic fluctuation (assumed small) and o is its

frequency. Substituting Eq. (4) into Eq. (3) yields

€Zþ 2Mru0 _Z0 þ _Z000 0 þ Z000 0 þ ½u20 � T � gÞ�Z00 þ gxZ00 þ ḡZ0 ¼ m½Mru0oð1� xÞZ00 sinðot̄Þ

� ð2u20Z
00 þ 2Mru0 _Z0Þ cosðotÞ� þ gZ00

Z 1

0

ðZ0Þ2 dxþ 2agZ00
Z 1

0

Z0 _Z0 dx: ð5Þ

Note that in Eq. (5) the higher-order terms of m have been omitted.

To discretize Eq. (5) in accordance with Galerkin’s method, let

Zðx; t̄Þ ¼
XN

i¼1

ciðxÞqiðtÞ, (6)

where qiðt̄Þ; i ¼ 1; 2; . . . ;N, are the generalized coordinates and ciðxÞare the eigenfunctions of the supported

(pinned–pinned or clamped-clamped) beam. It was pointed out by Paı̈doussis and Issid (1974) that the instability

boundaries for pinned-pinned and clamped-clamped pipes could be determined with the two-mode expansion ðN ¼ 2Þ

of Eq. (6) with adequate precision, and their experimental results were found to be at least in good qualitative

agreement with those predicted by theory (Paı̈doussis and Issid, 1976). As the main purpose of this paper is to

investigate some of the qualitative behavior of the system, a two-mode expansion ðN ¼ 2Þ of Eq. (6) is taken in the

analytical model for simplicity. Substituting Eq. (6) for N ¼ 2 into Eq. (5) and employing the orthogonality property of

the modes, one can reduce the partial differential Eq. (5) after laborious calculation to a four-dimensional first–order

ordinary differential equation:
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where
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FT ¼ gc11ðq21 þ 2aq1q3Þ þ gc22ðq
2
2 þ 2aq2q4Þ. (8)

Depending on the end conditions of the pipe, different values should be taken for some parameters in the above

expressions. For the pinned-pinned pipe, we have

l1 ¼ p; l2 ¼ 2p; b21 ¼ 8=3; c11 ¼ �p2; c22 ¼ �4p2; e12 ¼ 40=9,

for the clamped-clamped pipe, we have

l1 ¼ 4:730040745; l2 ¼ 7:853204624; b21 ¼ 3:342015505; c11 ¼ �12:302617073,

c22 ¼ �46:050128937; e12 ¼ 3:342619181.
3. Averaged equations and regions of parametric resonances

The eigenvalue problem of S yields a quartic characteristic equation of the form

o4
i þ p1o

2
i þ p2 ¼ 0, (9)
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where
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Numerical analysis shows that for small mean velocity of flow below the critical velocity, uc corresponding to

divergence instability of the pipe, we always have p140; p240 and p340. Hence, for u0ouc the matrix S always has

two pairs of pure imaginary eigenvalues: �io1; �io2 ði ¼
ffiffiffiffi
-1

p
Þ, where o1 and o2 are the undamped natural frequencies

of the first and second modes of the system. We consider in this paper only the case of u0ouc; that is, we consider only

the parametric resonances which take place from a stable state of the pipe.

The matrix S can be put into Jordan normal form by a transformation matrix V which is composed of the

eigenvectors of S. Now we introduce the transformations

z ¼
ffiffiffi
m

p
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and substitute them into Eq. (7) to obtain
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where

x ¼ ðx1;x2; x3; x4Þ
T; X ¼ V�1SV; Ai ¼ V�1BiV ði ¼ 1; 2; 3Þ; fðxÞ ¼ V�1QðVxÞ. (12)

In Eqs. (11) and (12) we have used the fact that the nonlinear terms in Q(z) are all cubic with respect to z.

Next, we introduce the detuning parameter l through

o ¼ o0ð1þ lÞ, (13)

l being small and having the form of l ¼ ml. This implies that the analysis to be carried out is valid

only in the neighborhood of some given frequency o0. Applying the method of averaging one can derive the

following three regions of parametric resonance by using a similar technique as developed by Ariaratnam and

Namachchivaya (1986).
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In the above expressions, Aij
s denotes the element of the matrix Asðs ¼ 1; 2; 3Þ with ith row and jth column. The pipe

loses stability in this region by the parametric resonance, and we will refer to the motions as the first mode (sub-

harmonic) parametric resonance in what follows.
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Sub-harmonic oscillations occur in this region and we will refer to the motions as the second mode (sub-harmonic)

parametric resonance.
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3.3. For
o1 þ o2
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¼ 1
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The pipe loses stability in this region and develops quasiperiodic oscillations with two basic frequencies. We refer to

the motions as the combination (parametric) resonances in what follows.

The reader is referred to Appendix A for details for deriving the boundary equations of various resonance regions.
4. Effect of parameters on the regions of parametric resonances

In this section, we discuss the effect of the parameters of the system on the regions of parametric resonances. In Figs.

2(a) and (b), three regions of parametric resonances, determined by the expressions of Eqs. (14), (16) and (18), are

shown for pinned-pinned and clamped-clamped pipes, respectively. In each of Figs. 2a and b, the regions in the left and

right sides correspond to the parametric resonances of the first and second modes, respectively, and the middle one is

the combination resonance. These three resonance regions are located near o0 ¼ 2o1; o0 ¼ o1 þ o2 and o0 ¼ 2o2,

respectively, in both pipes. The parameter values applied in Fig. 2 were chosen to be (Namachchivaya, 1989;

Namachchivaya and Tien, 1989a):

u0 ¼ 1:88; Mr ¼ 0:8; a ¼ 0:005; g ¼ T ¼ 0 (20)

for the pinned-pinned pipe, and

u0 ¼ 4:0; Mr ¼ 0:447; a ¼ 0:001; g ¼ T ¼ 0 (21)

for the clamped–clamped pipe. In the following analysis of this section the same parameter values will be taken as

shown in Eqs. (20) and (21), except for those parameters that are given with special values other than above. In Figs.

3(a)–(j) the effects of some parameters, such as the damping (a), mean flow velocity (u0), mass ratio (Mr), tension (T)

and gravity (g), on the resonance regions are shown. As we see from Figs. 3(a) and (b), with increasing a the resonance

regions are displaced upwards and hence for a given value of m, the range of o where the resonances occur becomes

narrower. As the mean flow velocity, u0, is increased the regions of parametric resonance are displaced towards the left

of the figure, which reflects the fact that the natural frequencies of the first and second modes of the system decrease

with increasing flow velocity, as shown in Figs. 3(c) and (d) . It can also be seen from the figures that the regions of these

instabilities are displaced downwards and become broader with increasing u0; this implies that as the mean flow velocity
Fig. 2. The regions of the three parametric resonances: (a) pinned–pinned pipe (u0 ¼ 1:88;Mr ¼ 0:8; a ¼ 0:005; g ¼ T ¼ 0); (b)

clamped–clamped pipe (u0 ¼ 4:0;Mr ¼ 0:447; a ¼ 0:001; g ¼ T ¼ 0).
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Fig. 3. The effect of various parameters on the regions of parametric resonance. (a) Effect of damping for a pinned–pinned pipe, for

a ¼ 0:001, 0.005, 0.008. In this figure, and in what follows, we indicate the curves corresponding to the first, second and third

parameter values by a solid, dotted and dash–dot lines, respectively. (b) Effect of damping for a clamped–clamped pipe for a ¼ 0:001,
0.002, 0.003. (c) Effect of mean velocity for a pinned-pinned pipe for u0 ¼ 1:3; 2:0; 2:7. (d) Effect of mean velocity for a clamped-

clamped pipe for u0 ¼ 2:5; 4:0, 5.6. (e) Effect of mass ratio for a pinned-pinned pipe for Mr ¼ 0:5, 0.6, 0.8. (f) Effect of mass ratio for a

clamped-clamped pipe for Mr ¼ 0:2; 0:447; 0:8. (g) Effect of tension for a pinned-pinned pipe for T ¼ �5, 0, 10. (h) Effect of tension

for a clamped-clamped pipe for T ¼ �15, 0, 20. (i) Effect of gravity for a pinned-pinned pipe for ḡ ¼ �10; 0; 15. (j) Effect of gravity
for a clamped-clamped pipe for ḡ ¼ �20; 0; 30.

J.D. Jin, Z.Y. Song / Journal of Fluids and Structures 20 (2005) 763–783768
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Fig. 3. (Continued)
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is increased the system loses its stability more easily with the smaller amplitude of excitation and with the broader range

of excitation frequency o. Figs. 3(e) and (f) show the effect of the mass ratio, Mr, on the regions of parametric

resonances. With increasing Mr, the resonance regions become broader, and are displaced downwards in the direction

of the m-axis; whereas in the direction of the o-axis different trends are observed depending on the different parametric

resonances. The region of first-mode resonance is displaced towards the left with increasing Mr; while the regions of

second-mode and combination resonances are displaced towards the right, which reflect the fact that the natural

frequency of the first mode decreases somewhat with increasing Mr, while the frequency of the second mode increases

with increase of Mr [cf. Paı̈doussis and Issid (1974, Fig. 3)].

The effect of the tension (T) and gravity (g) on the regions of parametric resonance is shown in Figs. 3(g), 3(h) and

3(i), 3(j). As T is increased the resonance regions are displaced towards the right of the figure, which reflects the increase

of the natural frequencies of both the first and second modes with increasing T; while in the direction of the m-axis the
resonance regions almost have no change of location, except that the regions of the first mode resonance and

combination resonance for the pinned-pinned pipe are displaced upwards slightly with increasing T. As g is increased

(go0 represents the flow moves upwards, i.e., in the opposite direction to the gravity) the resonance regions are also

displaced towards the right since the natural frequencies of the first and second modes increase with increasing g, and a

similar effect is to be found as is seen when T is increased. The effect of some parameters on the stability region were

discussed in the work of Paı̈doussis and Issid (1974), Paı̈doussis and Sundararajan (1975) and Ariaratnam and

Namachchivaya (1986); the results in this paper are in good agreement with these earlier results. Comparison of the

boundary equations for instability (resonance) between the result obtained by Ariaratnam and Namachchivaya (1986)

and the result of this paper is made in Appendix A, and the two results are found to be equivalent in fact.

In Fig. 4, the boundaries of instability given in the present paper are compared with those given in previous study by

Paı̈doussis and Issid (1974) for a clamped-clamped pipe as Mr and a are varied, and it is found that most of these results

are in good agreement except for some cases when a ¼ 0. In Fig. 4(a), these two results are compared for Mr ¼ 0:2 and
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Fig. 4. Comparison of the boundaries of instability from the present results to those of previous investigations by Paı̈doussis and Issid

(1974) for a clamped–clamped pipe. In the figures, o01 represents the first mode natural frequency at zero flow. (a) The regions of the

first mode resonance for Mr ¼ 0:2, 0.5, 0.8 (u0 ¼ 2; a ¼ 0; ḡ ¼ 10;T ¼ 0). The two results are in agreement for Mr ¼ 0:2 and 0.5. For

Mr ¼ 0:8, the left boundaries in the two results are in disagreement; 1, present result; 2, Paı̈doussis and Issid (1974). (b) The regions of

the first and second mode resonances for a ¼ 0 and 0.000754 (u0 ¼ 2;Mr ¼ 0:5; ḡ ¼ 10;T ¼ 0). For aa0, the boundaries in the two

results are in agreement. For a ¼ 0, the right boundaries of the second mode resonance in the two results are in disagreement; 1, present

result; 2, Paı̈doussis and Issid (1974). (c) The instability boundaries for the same system as in Fig. 4(a) for Mr ¼ 0:8 and for a ¼ 0,

0.0005, 0.001; 1, present result (for a ¼ 0); 2, Paı̈doussis and Issid (1974) (for a ¼ 0).

J.D. Jin, Z.Y. Song / Journal of Fluids and Structures 20 (2005) 763–783770
0.5 and found to be almost identical, and hence the difference in boundaries in these two results is not discernible in the

figure. However, for Mr ¼ 0:8, though the right boundaries are in good agreement, the left boundaries are in

disagreement since the boundary in previous investigation by Paidoussis and Issid (1974) (see Fig. 12 in their paper) is not

straight. In Fig. 4(b), the boundaries of instability in the two results are found to be in good agreement for aa0; while for

a ¼ 0, the right boundaries of the second mode instability are in disagreement since the boundary in the previous result by

Paı̈doussis and Issid (1974) is not straight (See Figs. 9 and 10(b) in their paper). To determine the boundaries numerically,

numerical simulations were carried out by solving Eq. (7) directly in the neighborhood of these boundaries. When aa0, it

is easy to determine the boundaries with the numerical method since at the points out of the unstable regions the responses

to all initial disturbances always decay with passage of time. In Fig. 4(c), the instability boundary for Mr ¼ 0:8 in Fig. 4(a)

is plotted applying our analytical method with varying a. The instability boundaries for aa0 in Fig. 4(c) can also be

determined with the numerical method mentioned above, and the boundaries of the theoretical result were found to be in

good agreement with that of the numerical result. It is easy to see from the figure that the straight boundary for a ¼ 0 in

the present result is the natural limit of the boundary lines when a ! 0. However, the boundaries for a ¼ 0 cannot be

determined with the numerical method directly, because in this case the response to any initial disturbance no longer

decays with passage of time (the system becomes a conservative system when a ¼ 0).
5. Parametric resonances

We now consider the nonlinear behavior of pipes when parametric resonances occur. In Appendix A, the nonlinear

term f(x) in Eq. (11) was neglected in deriving the stability regions of the trivial solution. Now, retaining the nonlinear
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term neglected and doing the same procedure of averaging as done in Appendix A for Eq. (11), one can obtain the

equation of the response curves, which gives the relation between the amplitude and frequency for the steady state

responses, by setting _ai ¼ 0 and _yi ¼ 0 (for i ¼ 1; 2) in the resulting averaged equations. This procedure and calculation

are quite laborious, and so we do not attempt to give the explicit analytical formulation of the equation here. We give

only some numerical results of the response curves for some given parameter values, according to this equation.

In Figs. 5(a) and (b) the various response curves (obtained by varying m) are given in the o� a plane, where a represents

the amplitudes of the first and second mode resonances, for the parametric resonances of the first and second modes1.

The same responses in Figs. 5(a) and 5(b) are plotted in the o� Za plane in Figs. 5(c) and (d), where, and in what

follows, Za represents the dimensionless amplitude of the pipe at a point, say x ¼ 0:65. The upper portion of the

response curves indicated by the solid lines in Fig. 5 corresponds to the stable periodic motions (the parametric

resonances of the pipe), and the lower portion of the response curves represented by the dotted lines corresponds to the

unstable periodic motions. We explain such a nonlinear response of the system through an example for the first mode

resonance of the pinned-pinned pipe for m ¼ 0:4 (see Figs. 5(a) and (c)). In the region of ooA in Figs. 5(a) and (c) the

trivial solution, which corresponds to the undeformed state of the pipe, is stable, and the responses to all initial

disturbances decay with passage of time. In region of AoooB, the trivial solution is unstable, and any initial

disturbance can produce a steady state periodic response (i.e., the sub-harmonic resonance with the first mode). If the

initial amplitude is very large, the response will decay until steady state motion is reached. On the other hand, if the

initial disturbance is very small, the response will grow to reach the condition of steady-state motion. Thus in region of

AoooB, all initial disturbances, regardless of how large or how small the amplitude, always produce the same steady-

state periodic motion for a given value of o, that is, a limit cycle motion exists. In region of o4B, the response to an

initial disturbance may either decay to the trivial solution or achieve a sustained periodic motion (a limit cycle

corresponding to the sub-harmonic resonance with the first mode). The boundary separating the two domains of

attraction in the state space is the unstable periodic motion (unstable limit cycle) corresponding to motions indicated by

the dotted lines in Figs. 5(a) and (c).

It is noted that the above results of nonlinear response shown in Fig. 5, and similar results given in the investigations

by Namachchivaya (1989) and Namachchivaya and Tien (1989a, b), are obtained from the equation of averaging. As

indicated previously in the Introduction, since the detuning of frequency, l, is a small parameter used in the method of

averaging, the amplitude–frequency relationship given in these results is valid only in the vicinity of the resonances.

Therefore, the analysis for the nonlinear responses in terms of the averaged nonlinear equation is meaningless for the

case when the exciting frequency goes far away from the resonance region. Comparison of nonlinear responses between

the results of averaged equation and the results obtained by solving directly the original equation (7) numerically is

made in Figs. 5(c) and (d) for m ¼ 0:4 for a pinned–pinned pipe and for m ¼ 0:25 for a clamped-clamped pipe,

respectively. Regarding the numerical results in Figs. 5(c) and (d), we will give a more detailed explanation in the next

two subsections.

Some numerical methods for solving the equation of motion are applied in the next subsections to investigate the

dynamical behavior of the system. Especially, we are interested to investigate how far the regions of parametric

vibrations can extend away from the resonance regions and what would occur in the regions far away from the

resonance regions. The amplitude–frequency response curves and their properties are studied for some given parameter

values through tracing the response curves numerically from the region of resonance to that of non resonance. We give

two numerical examples in Sections 5.1 and 5.2:

u0 ¼ 1:88; Mr ¼ 0:8; a ¼ 0:005; g ¼ 5000; g ¼ T ¼ 0; m ¼ 0:4 (22)

for the pinned–pinned pipe; and

u0 ¼ 4:0; Mr ¼ 0:447; a ¼ 0:001; g ¼ 5000; g ¼ T ¼ 0; m ¼ 0:25 (23)

for the clamped–clamped pipe, to discuss the properties of nonlinear response obtained via these numerical studies.
5.1. Parametric resonances of pinned–pinned pipe

Corresponding to the parameter values given in Eqs. (22), the undamped natural frequencies of the first and second

modes of the system are o1 ¼ 7:716 and o2 ¼ 38:602, respectively. The stability regions and the amplitude–frequency
1In the papers by Namachchivaya (1989) and Namachchivaya and Tien (1989a,b) the value of the coefficient of the nonlinear term k

(which corresponds to the coefficient of nonlinear term g in the present paper) in the equation of motion was not given in their

numerical examples, and so the nonlinear responses shown in Fig. 5 could not be compared with their results.
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Fig. 5. Nonlinear response curves of parametric resonances with the first and second modes. (a) The response curves in the o� a plane

for a pinned-pinned pipe with m ¼ 0:28 and 0.4 (u0 ¼ 1:88; Mr ¼ 0:8; a ¼ 0:005; g ¼ 5000; g ¼ T ¼ 0). (b) The response curves in the

o� a plane for a clamped- clamped pipe with m ¼ 0:1 and 0.25 (u0 ¼ 4:0; Mr ¼ 0:447; ; a ¼ 0:001; g ¼ 5000; g ¼ T ¼ 0). (c) The

response curves in o� Za plane for the same system as in (a). In the figure, 1 and 2 represents the response curves of the first and second

modes, respectively, obtained with numerical method for m ¼ 0:4. (d) The response curves in o� Za plane for the same system as in (b).

In the figure, 1 and 2 represent the response curves of the first and second modes, respectively, obtained with numerical method for

m ¼ 0:25.
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response curves are shown in Figs. 6(a) and 6(b), respectively. The response curves in the figure are obtained through

tracing the resonance responses by solving Eq. (7) numerically with increasing frequency o incrementally.
5.1.1. Simple parametric resonances

We now analyze numerically two simple parametric resonances: the sub-harmonic resonances of order 1
2
for the first

and second modes. The frequencies corresponding to the boundary points A and B (see Fig. 6(a)) in the resonance

region of the first mode for m ¼ 0:4 are oA � 12:7 and oB ¼ 19:6, respectively, which are located to the left and right of

o0 ¼ 2o1 ¼ 15:432, respectively. As o is increased from the left of oA, the pipe loses stability at o ¼ oA, and a sub-

harmonic resonance of the first mode takes place. In fact, the trivial solution of the associated averaged system loses

stability at o ¼ oA through a simple bifurcation (the linear part of the system has a zero eigenvalue at that point)

(Namachchivaya, 1989). The amplitude of the resonance is increased with increasing o, and we have tracked the

motions up to o ¼ 51:3 (see Fig. 6(b)). An example of such a sub-harmonic resonance with the first mode for o ¼ 46 is

shown in Fig. 7(a). In this figure, and in what follows, the axes Z and _Z represent the nondimensional displacement and
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Fig. 6. (a) Stability boundaries for pinned–pinned pipe. (b) Amplitude–frequency response curves for m ¼ 0:4. FM: first mode

subharmonic resonance; SM: second mode sub-harmonic resonance; QP: quasiperiodic motion; CP: combined periodic motion.
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velocity of the pipe at x ¼ 0:65. As seen from Fig. 7(a) the resonance is nearly a simple harmonic motion with the basic

frequency of ¼ 23:022, which is related to the exciting frequency o by 2of � o.
The frequencies corresponding to the boundary points E and F (see Fig. 6(a)) in the resonance region of the second

mode for m ¼ 0:4 are oE � 69:7 and oF ¼ 87, respectively, which are located to the left and right of o0 ¼ 2o2 ¼ 77:204,
respectively. As o is increased from the left of oE, the pipe loses stability at o ¼ oE, and the subharmonic resonance of

the second mode occurs. The amplitude of the resonance is increased with increasing o, and we have tracked the

motions numerically up to o ¼ 105. An example of such a motion for o ¼ 77 is shown in Fig. 7(b). Like the resonance

of the first mode, the motion is also nearly simple harmonic with a basic frequency os ¼ 38:371, related to o by

2os � o. The relationship between the basic frequencies of sub-harmonic motions and the frequency of excitation is

shown in Fig. 8.
5.1.2. Combination parametric resonances

The frequencies corresponding to the boundary points C and D (see Fig. 6(a)) in the region of the combination

resonance for m ¼ 0:4 are oC � 42:6 and oD � 50:1, respectively, which are located to the left and right of

o0 ¼ o1 þ o2 ¼ 46:318. It is shown that, as o is increased from the left of oC, the trivial solution in the corresponding

averaged system loses stability by a Hopf bifurcation at o ¼ oC (Namachchivaya and Tien, 1989a); therefore, in the

original system the pipe loses stability also at o ¼ oC, and a quasiperiodic motion takes place. We tracked numerically

such motions up to o ¼ 50:8. The numerical simulations of such a quasiperiodic motion for o ¼ 46 are shown in Figs.

7(c)–(e). It may be seen from Fig. 7(e) that the motion has two basic frequencies of oq1 � 9:738 ðf q1 � 1:557Þ and

oq2 � 36:257 ðf q2 � 5:771Þ. For a quasiperiodic motion, these two basic frequencies should be incommensurate (Nayfeh

and Balachandran, 1995), and the Poincaré maps of response form a closed loop (Fig. 7(d)). The relationship between

the basic frequencies of the combination resonance, denoted by ‘‘quasiperiodic (1)’’, and the exciting frequency is shown

in Fig. 9. It is easy to see from the figure that there always exists the relation of o � oq1 þ oq2, that is, the sum of the

two basic frequency values of the combination resonance is approximately equal to the value of the exciting frequency

o.
In addition to the quasiperiodic motions mentioned above, we found some periodic motion in the region of the

combination resonance, and it will be called combined periodic motion in what follows. The region where the periodic

motions exist is o � 44:9259:3. An example of such a combined periodic motion at o ¼ 46 is shown in Figs. 7(f) and
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Fig. 7. Numerical simulations for pinned–pinned pipe. (a) Sub-harmonic resonance with the first mode for o ¼ 46. (b) Sub-harmonic

resonance with the second mode for o ¼ 77. (c) Quasiperiodic motion for o ¼ 46. (d) Poincaré Map of the motion in (c). (e) Amplitude

spectrum of the motion in (c). (f) Combined periodic motion for o ¼ 46. (g) Amplitude spectrum of the motion in (f). (h) Quasiperiodic

motion for o ¼ 59:5. (i) Poincaré Map of the motion in (h). (j) Amplitude spectrum of the motion in (h).
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Fig. 9. Relationship between the basic frequencies of the quasiperiodic motion(1) (oqi), combined periodic motion (oci) and

quasiperiodic motion(2) (oqi) and the frequency (o) of excitation, for pinned–pinned pipe.

Fig. 8. Relationship between the basic frequencies (of and os) of sub-harmonic motions with the first and second modes and the

frequency (o) of excitation, for pinned-pinned pipe.
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(g). It is seen from the figures that the motion also has two basic frequencies of oc1 ¼ 11:511 ðf c1 ¼ 1:832Þ and

oc2 ¼ 34:534 ðf c2 ¼ 5:496Þ , which are related to the exciting frequency o by o � oc1 þ oc2. Since the motion is

periodic, the basic frequencies oc1 and oc2 should be commensurate (Nayfeh and Balachandran, 1995). The relationship

between the basic frequencies of the combined periodic motions and the exciting frequency is also shown in Fig. 9. It is

not known yet whether the combined periodic motion is born at o ¼ oC together with the quasiperiodic motions, since

this motion has not been captured near the Hopf bifurcation point in our numerical analysis. Note that as o is increased

further, a change in the motion takes place near o � 59:4 from the combined periodic motion, and another type of

quasiperiodic motion (which differs from the previous one) appears in the region of o ¼ 59:4259:95. An example of

such a quasiperiodic motion for o ¼ 59:5 is shown in Figs. 7(h)–(j). The relationship between the basic frequencies of

the quasiperiodic motions, which are denoted by ‘‘quasiperiodic(2)’’, and the exciting frequency is also shown in Fig. 9.

It is noted in Fig. 6(b) that the sub-harmonic resonance curve of the first mode extends as far as the region of the

combination resonance. This phenomenon may lead to multiple responses of steady state oscillation at the same

exciting frequency o in the overlap regions of different resonance curves, as shown in Table 1. In region 1

(o � 42:6244:6) two different motions, the sub-harmonic response of the first mode and the quasiperiodic motion, can

arise corresponding to every value of o in the region, and similarly, three and two different motions can occur in region

2 (o � 44:7250:8) and region 3 (o � 50:9251:3), respectively.
It should be noticed that in the previous numerical examples for the sub-harmonic motion of the first mode in Fig.

7(a), quasiperiodic motion in Fig. 7(c) and combined periodic motion in Fig. 7(f), the exciting frequency o is always

taken to be o ¼ 46, which lies in region 2 in Table 1. The condition that makes the system to have different behavior at

the same exciting frequency (o ¼ 46) is just the different initial values associated with each motion. Every motion in

such regions where the system has multiple responses at the same frequency o possesses its domain of attraction in the
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Table 1

The regions of multiple responses, for pinned–pinned pipe

Number of region 1 2 3

Range of frequency, o 42.6–44.6 44.7–50.8 50.9–51.3

Possible motions A,B A,B,C A,C

A Sub-harmonic motion of first mode; B quasiperiodic motion(1); C combined periodic motion.
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state space. If the motion of the system in such a region is subjected to a shock which is large enough, then a sudden

change of motion from one steady state to another probably takes place in some cases. Such a phenomenon (the sudden

change of motion) is different from the jump phenomenon in amplitude, which may be seen in standard books on

nonlinear forced oscillations. The change of motion in the latter case manifests itself in the magnitude of amplitude,

while in the former case it involves not only the amplitude but the type of motion and the frequency relation between

the response and excitation. It should also be noted that in the previous numerical examples of Fig. 7(a), (c) and (f)

there is a certain relation between the three different responses and the excitation, that is,

2of � oq1 þ oq2 � oc1 þ oc2 � o ¼ 46.

Similar relations can be found in each region in Table 1.

Region 1 : 2of � oq1 þ oq2 � o;

Region 2 : 2of � oq1 þ oq2 � oc1 þ oc2 � o;

Region 3 : 2of � oc1 þ oc2 � o. ð24Þ

5.2. Parametric resonances of clamped-clamped pipe

We now analyze some properties of the parametric resonances for a clamped–clamped pipe, applying the same

numerical method as used in the previous subsection for the pinned–pinned pipe. Some fixed parameter values used are

given in Eq. (23). The natural frequencies of the first and second modes of the system corresponding to these parameter

values are o1 ¼ 16:996 and o2 ¼56.784, respectively. The stability regions and the (stable) amplitude-frequency

response curves are shown in Figs. 10(a) and (b), respectively.

5.2.1. Simple parametric resonances

The simple parametric resonances of the first and second modes are investigated numerically in this subsection for a

clamped–clamped pipe, in the same way as was done in Section 5.1.1 for the pinned-pinned pipe.

The frequencies corresponding to the boundary points A and B (see Fig. 10(a)) in the region of the first mode sub-

harmonic resonance for m ¼ 0:25 are oA � 30:5 and oB � 37:4, respectively, which are located to the left and the right

of o0 ¼ 2 o1 ¼ 33:992, respectively. As o is increased from the left of oA the pipe loses stability at o ¼ oA, and then

the subharmonic resonance of the first mode arises. The amplitude of the resonance is increased with increase of o, and
we tracked the motions numerically up to o ¼ 116 (see Fig. 10(b)). The resonance is a nearly simple harmonic motion,

like the case of pinned-pinned pipe shown in Fig. 7(a), and the frequencies of the response and excitation are related by

2of � o.
The frequencies corresponding to the boundary points E and F (see Fig. 10(a)) in the resonance region of the second

mode for m ¼ 0:25 are oE � 104:8 and oF � 123:8, respectively, which are located to the left and the right of

o0 ¼ 2 o2 ¼ 113:568, respectively. As o is increased from the left of oE the pipe loses stability at o ¼ oE, and then the

sub-harmonic resonance of the second mode takes place. The amplitude of the resonance is increased with increasing o,
and we tracked such motions numerically up to o ¼ 225. The motion is also nearly simple harmonic, and the basic

frequency os is related to the exciting frequency o by 2os � o.

5.2.2. Combination parametric resonances

The frequencies corresponding to the points C and D (see Fig. 10(a)) in the boundary of the combination resonance

region for m ¼ 0:25 are oC � 70:9 and oD � 76:1, respectively, which are located to the left and the right of

o0 ¼ o1 þ o2 ¼ 73:78, respectively. As o is increased from the left of oC the trivial solution in the averaged system
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Fig. 10. (a) Stability boundaries for clamped–clamped pipe. (b) Amplitude–frequency response curves for m ¼ 0:25. FM: first-mode

sub-harmonic resonance; SM: second-mode sub-harmonic resonance; QP: quasiperiodic motion; CP: combined periodic motion.

Table 2

The regions of multiple responses, for clamped–clamped pipe

Number of region 1 2 3 4 5 6

Range of frequency, o 70.9–73 73.1–73.4 73.5–76.3 76.4–104.7 104.8–109 109.1–116

Possible motions A,C A,C,D A,D A,C A,B,C A,B

A Sub-harmonic motion of first mode; B sub-harmonic motion of second mode; C quasiperiodic motion; D combined periodic motion.
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loses stability by the Hopf bifurcation at o ¼ oC , and hence a quasiperiodic motion arises in the original system. The

frequency ranges of the quasiperiodic motions found in the numerical investigation are o � 70:9273:4 and 76.4–109.

The motion has two basic frequencies of oq1 and oq2, and they always satisfy the relationship o � oq1 þ oq2. As

indicated in the previous subsection, these two frequencies should be incommensurate. Like the case of

pinned-pinned pipe, in the region of the combination resonance some periodic motion (called combined periodic

motion) exists in addition to the quasiperiodic motions mentioned above. The region where the periodic motions exist is

o � 73:1276:3. The motion has two basic frequencies of oc1 and oc2, which are related to the exciting frequency o by

o � oc1 þ oc2.

It is noted that the combination resonance curve in Fig. 10(b) extends as far as the region of the sub-harmonic

resonance of the second mode, and the first mode resonance curve covers completely the whole region of the

combination resonance and extends as far as the region of the second mode resonance. As indicated in the previous

subsection for the case of a pinned–pinned pipe, the multiple responses of steady-state oscillation will occur in these

overlap regions of different resonance curves, as shown in Table 2. There are certain relations between the different

responses and the excitation in each region in Table 2, as follows:

Region 1 : 2of � oq1 þ oq2 � o;

Region 2 : 2of � oq1 þ oq2 � oc1 þ oc2 � o;

Region 3 : 2of � oc1 þ oc2 � o;
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Region 4 : 2of � oq1 þ oq2 � o;

Region 5 : 2of � oq1 þ oq2 � 2os � o;

Region 6 : 2of � 2os � o. ð25Þ

5.3. Summary

In general, the nonlinear equation of motion of a physical system, such as Eq. (11), has many solutions other than

those that are periodic, and so it is difficult to give a general analytical method for determining the nonlinear behavior

of the system in a global region. This allows us to think naturally of using numerical methods to determine the

nonlinear behavior of the system when parametric resonances occur. Numerical computations that we have carried out

for various parameter values shows that a similar qualitative behavior of the nonlinear responses as those shown in

Sections 5.1 and 5.2 can be obtained when the parameters take different values than those given by Eqs. (22) and (23).

This behavior may be summarized as follows.

(a) The overlap regions of the different parametric resonances always exist, though the ranges of the regions are

somewhat different according to the different parameter values. This implies that there is always the possibility that

several different parametric resonances take place in the system, corresponding to the same value of the exciting

frequency o in certain circumstances.

(b) If the multiple responses mentioned in (a) take place, then there is always a certain relation of frequencies between

the different responses and the excitation, such as Eqs. (24) and (25) in the examples given in Sections 5.1 and 5.2. This

is an interesting phenomenon from the physical point of view. To explain this we need a careful analytical study of the

structure of the solution of Eq. (11) in a global sense, though this is very difficult for a nonlinear equation.

(c) In the region of combination resonance, we always find quasiperiodic motions and combined periodic motions,

even though the configurations of these response curves change somewhat according to the different parameter values.

In addition, the results of numerical calculations show that the combined periodic motions seem to possess the

character of f c2 � 3f c1, always. In Tables 3 and 4, the numerical results for some sample points of o for the combined

periodic motions are shown for pinned–pinned and clamped–clamped pipes, respectively. It is easy to see the relations

of f c1 þ f c2 � f and f c2 � 3f c1 from the tables. In a subsequent paper, the authors hope to provide a discussion on this

issue together with an analytical method. We know that the response curve of quasiperiodic motion is initiated from the

point where the Hopf bifurcation occurs in the corresponding averaged equation, whereas for the combined periodic

motion, it is not yet known exactly where the beginning of the response curve is.
Table 3

Combined periodic motions, for pinned–pinned pipe

o 46 47 49 51 53 55 57 58

f ¼
o
2p

� �
7.32113 7.48028 7.7986 8.1169 8.43521 8.75352 9.07183 9.23099

f1 1.78659 1.89313 1.9542 2.0429 2.1304 2.19189 2.28148 2.31167

f2 5.35976 5.61832 5.89313 6.1287 6.36077 6.6061 6.82922 6.93502

3 f1 5.35977 5.67939 5.8626 6.1287 6.3912 6.57567 6.84444 6.93501

f 1 þ f 2 7.14635 7.51145 7.84733 8.1716 8.49117 8.79799 9.1107 9.24669

Table 4

Combined periodic motions, for clamped–clamped pipe

o 73 74 75 76

f ¼
o
2p

� �
11.61831 11.77747 11.93662 12.09578

f1 2.9313 2.94823 2.99237 3.0229

f2 8.73282 8.8244 8.94656 9.0687

3 f1 8.7939 8.84469 8.97711 9.0687

f 1 þ f 2 11.66412 11.77263 11.93893 12.0916
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6. Conclusions

In this paper, the parametric resonances of pipes with supported ends conveying pulsating fluid have been analyzed

by means of numerical methods. According to the stability criterion derived, the effect of some physical parameters of

the system, such as damping, mean flow velocity, mass ratio, tension and gravity, on the three regions of parametric

resonances has been discussed. The amplitude–frequency response curves of parametric resonances and their frequency

characteristics have been investigated through numerical simulations. The results obtained show that several motions

may arise in the region of combination resonance, including quasiperiodic and combined periodic motions.

There exist some regions of overlap between the regions of the different resonances, and hence the multiple responses

of steady state oscillation may occur at the same value of the exciting frequency o in these overlap regions. This

phenomenon may lead to sudden changes in motion from one steady state response to another in some cases. The

change can occur not only in the amplitude of oscillation, but in the type of motion and in the frequency relation

between the response and the excitation. If multiple responses take place, then there is always a certain frequency

relationship between the different responses and the excitation.
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Appendix A

Expressions (14), (16) and (18), via which the boundaries of the resonance regions are determined, can be derived by

using the method of averaging. In deriving these expressions in a previous study by Ariaratnam and Namachchivaya

(1986) some advanced analysis was used, such as the symplectic transformation method of Hamiltonian systems. We

now wish to give the essence of the procedure for deriving these expressions with a more regular process and, in

addition, to consider further the effect of some parameters that were not considered in previous study.

Substituting Eq. (13) into Eq. (11), we obtain

_x ¼ X̂xþ mð�l̄X̂xþG� fðxÞ=o0Þ, (A.1)

where

X̂ ¼
X
o0

¼
K1 O

O K2

 !
; Ki ¼ ki

0 �1

1 0

� �
ði ¼ 1; 2Þ; O ¼

0 0

0 0

� �
; k1 ¼

o1

o0
; k2 ¼

o2

o0
,

G ¼ ðg11; g12; g21; g22Þ
T

 ðA1 sin t� ðA2 cos tÞ=o0 � āA3=o0Þx. (A.2)

In deriving Eq. (A.1) we used the fact that

1

1þ ml̄
¼ 1� ml̄þ Oðm2Þ.

In this paper, only the cases of o0 ¼ 2o1 (or k1 ¼ 1=2), o0 ¼ 2o2 (or k2 ¼ 1=2) and o0 ¼ jo1 � o2j (or 1 ¼ jk1 � k2j)

are considered.

In order to transform Eq. (A.1) into equations of the amplitude-phase form, we introduce the following

transformations:

x2i�1 ¼ ai cos ji; x2i ¼ ai sin ji; ði ¼ 1; 2Þ; (A.3)

where

j1 ¼ k1tþ y1; j2 ¼ k2tþ y2, (A.4)

a1, a2, y1 and y2 being functions of t. The nonlinear term, f(x), in Eq. (A.1) need not be considered for the stability

analysis of the trivial solution, i.e., the undeformed state of the pipes, except for some of the degenerate cases.

Letting fðxÞ ¼ 0 in Eq. (A.1) and substituting Eq. (A.3) and (A.4) into Eq. (A.1) and solving it for _ai and ai
_yi, we

obtain
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_ai ¼ m½ðlkiai sin ji þ gi1Þ cos ji þ ð�lkiai cos ji þ gi2Þ sin ji�,

ai
_yi ¼ m½ð�lkiai cos ji þ gi2Þ cos ji � ðlkiai sin ji þ gi1Þ sin ji� ði ¼ 1; 2Þ, (A.5)

where gij is defined in Eq. (A.2).

Applying the averaging operator, lim
T!1

ð1=TÞ
R T

0 ð Þdt, to Eq. (A.5) one obtains a set of averaged equations

_ai ¼ lim
T!1

1
T

R T

0 mðgi1 cos ji þ gi2 sin jiÞdt;

ði ¼ 1; 2Þ:

ai
_yi ¼ �lkiai þ lim

T!1

1
T

R T

0 mðgi2 cos ji þ gi1 sin jiÞdt;
(A.6)

In the above equations, no distinction has been made between the averaged and nonaveraged variables for

notational convenience. We shall now discuss a number of special cases that arise from the special choices of the

parameters k1 and k2.

A.1. Case of k1 ¼ 1=2 (i.e., t ¼ 2j1 � 2y1)

Let

2y10 ¼ tan�1ðV1=U1Þ. (A.7)

Using Eqs. (15) and (A.7), Eq. (A.6) can be written as

_a1 ¼ ðm=4ÞðU2
1 þ V2

1Þ
1=2a1 sin ð2y1 þ 2y10Þ � aðA11

3 þ A22
3 Þa1=ð2o0Þ,

_y1 ¼ ðm=4ÞðU2
1 þ V2

1Þ
1=2 cosð2y1 þ 2y10Þ � aðA21

3 � A12
3 Þ=ð2o0Þ � l=2,

_a2 ¼ �aðA33
3 þ A44

3 Þa2=ð2o0Þ,

_y2 ¼ �lk2 � aðA43
3 � A34

3 Þ=ð2o0Þ. ðA:8Þ

It is noted that the motions of the first and second modes in Eqs. (A.8) are uncoupled. Numerical analysis shows that

for u0ouc; A33
3 þ A44

3 , is always positive, and hence from the third of Eqs. (A.8) it is easy to see that the motion of the

second mode will be damped out quickly. Therefore, the stability of the pipes depends ultimately on the stability of the

trivial solution of the first two of Eqs. (A.8), the first mode motion.

Introducing the transformation

x1 ¼ a1 cosðy1 þ y10Þ; z1 ¼ a1 sinðy1 þ y10Þ (A.9)

and substituting it into the first two of Eqs. (A.8), we obtain

_x1 ¼ ðm=4Þ U2
1 þ V2

1

� �1=2
þ a A21

3 � A12
3

� �
=ð2o0Þ þ l=2

� �n o
z1 � a A11

3 þ A22
3

� �
x1=ð2o0Þ,

_z1 ¼ ðm=4Þ U2
1 þ V2

1

� �1=2
� a A21

3 � A12
3

� �
=ð2o0Þ þ l=2

� �n o
x1 � a A11

3 þ A22
3

� �
z1=ð2o0Þ. ðA:10Þ

The characteristic equation of the coefficient matrix on the right side in Eqs. (A.10) may be written as

r2 þ
a

2o1
A11

3 þ A22
3

� �
rþ

a
4o1

A11
3 þ A22

3

� �� �2
þ

a
4o1

A21
3 � A12

3

� �
þ

o� 2o1

4o1

� �2(

�
m2

16
U2

1 þ V2
1

� ��
¼ 0: ðA:11Þ

To obtain this equation we used the fact that

ml ¼
o� o0

o0
; o0 ¼ 2o1.

We can derive from Eq. (A.11) the stability condition of the trivial solution as

jo=o1 � 2j4 m2 U2
1 þ V2

1

� �
� a A11

3 þ A22
3

� �
=o1

� �2n o1=2
. (A.12)

If this condition is not satisfied, then the pipe loses its stability by the first mode parametric resonances in the region

given by inequality (14).
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A.2. Case of k2 ¼ 1=2 (i.e.,t ¼ 2j2 � 2y2)

Let

2y20 ¼ tan�1ðV2=U2Þ. (A.13)

Substituting Eqs. (17) and (A.13) into Eqs. (A.6), we obtain

_a1 ¼ �aðA11
3 þ A22

3 Þa1=ð2o0Þ,

_y1 ¼ �lk1 � aðA21
3 � A12

3 Þ=ð2o0Þ,

_a2 ¼ ðm=4ÞðU2
2 þ V2

2Þ
1=2a2 sinð2y2 þ 2y20Þ � aðA33

3 þ A44
3 Þa2=ð2o0Þ,

_y2 ¼ ðm=4ÞðU2
2 þ V2

2Þ
1=2 cosð2y2 þ 2y20Þ � aðA43

3 � A34
3 Þ=ð2o0Þ � l=2. ðA:14Þ

As in the previous case of k1 ¼ 1=2, the motions of the two modes are uncoupled in this case also. Numerical analysis

shows that for u0ouc; A11
3 þ A22

3 is always positive, and so the motion of the first mode is damped out with increasing

time. Therefore, the stability of the pipe depends on the stability of the trivial solution of the last two of Eqs. (A.14), the

second mode motion. Through the same procedure as used in the previous case for k1 ¼ 1=2, we obtain the stability

condition of the pipe

jo=o2 � 2j4 m2 U2
2 þ V2

2

� �
� a A33

3 þ A44
3

� �
=o2

� �2n o1=2
. (A.15)

If the above condition is not satisfied, then the pipe loses its stability by the second mode parametric resonances in the

region given by inequality (16).
A.3. Case of k1 þ k2 ¼ 1 (i.e., t ¼ j1 þ j2 � y1 � y2)

In this case the averaged Eqs. (A.6) can be written by using Eqs. (19) as

_a1 ¼
m
4
½U12a2 sinðy1 þ y2Þ þ V12a2 cosðy1 þ y2Þ� �

a
2o0

ðA11
3 þ A22

3 Þa1;

a1 _y1 ¼
m
4
½U12a2 cosðy1 þ y2Þ � V12a2 sinðy1 þ y2Þ� �

a
2o0

ðA21
3 � A12

3 Þa1 � lk1a1;

_a2 ¼
m
4
½U21a1 sinðy1 þ y2Þ þ V21a1 cosðy1 þ y2Þ� �

a
2o0

ðA33
3 þ A44

3 Þa2;

a2 _y2 ¼
m
4
½U21a1 cosðy1 þ y2Þ � V21a1 sinðy1 þ y2Þ� �

a
2o0

ðA43
3 � A34

3 Þa2 � lk2a2: ðA:16Þ

Using the transformation

Y 1 ¼ a1 cos y1; Y 2 ¼ a1 sin y1; Y 3 ¼ a2 cos y2; Y 4 ¼ a2 sin y2, (A.17)

Eqs. (A.16) may be written as

_Y ¼ AY;Y ¼ ðY 1;Y 2;Y 3;Y 4Þ
T; A ¼

m
4

A1 U12

U21 A2

" #
,

Āi ¼
�2aLi=o0 4lki

�4lki �2aLi=o0

 !
ði ¼ 1; 2Þ; Uij ¼

Vij Uij

Uij �Vij

 !
ðij ¼ 12; 21Þ. (A.18)

The eigenvalue problem of A yields a quartic characteristic equation of the form

O4 þ a1O3 þ a2O2 þ a3Oþ a4 ¼ 0, (A.19)

where

a1 ¼
a
o0

ðL1 þ L2Þ,

a2 ¼ l2ðk2
1 þ k2

2Þ þ
a2

4o2
0

ðL1 þ L2Þ
2
�

m2

8
B �

a2

2o2
0

L1L2

� �
;
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a3 ¼ l2
a
o0

ðL1k2
2 þ L2k2

1Þ �
a
o0

ðL1 þ L2Þ
m2

16
B �

a2

4o2
0

L1L2

� �
,

a4 ¼
m2

16
B �

a2

4o2
0

L1L2 � l2k1k2

� �2

þ l2
a2

4o2
0

ðk1L2 � k2L1Þ
2. ðA:20Þ

If we define

a5 

4a2

o2
0

l2L1L2 � ðL1 þ L2Þ
2 m2

16
B �

a2

4o2
0

L1L2

� �� �
l2ðk1 � k2Þ

2
�

þ
a2

4o2
0

ðL1 þ L2Þ
2

�
ðA:21Þ

then, according to the Routh–Hurwitz criterion, the stability condition of the trivial solution is ai40 ði ¼ 1; 2; . . . ; 5Þ: It
is easy to see from Eqs. (A.20) and (A.21) that a1 and a4 are always positive, and a2; a3 and a5 are

all positive if

m2

4
B �

a2

o2
0

L1L2 (A.22)

and, therefore, the trivial solution is stable in this case. If

m2

4
B4

a2

o2
0

L1L2 (A.23)

then it is easy to show that a2,a3 and a5 are all positive when

l2L1L24ðL1 þ L2Þ
2 m2

16
B �

a2

4o2
0

L1L2

� �
, (A.24)

therefore, the trivial solution is also stable in this case. If inequality (A.24) is not satisfied, then a5 � 0, and the pipe loses

its stability by the combination parametric resonances in the corresponding region. The equation of the boundary curve

of this region may be written as

m ¼ 4
L1L2

B

a
2o0

� �2

þ
o� o0

o0

� �2
1

L1 þ L2

� �2
" #( )1=2

. (A.25)
A.4. Case of k1 � k2 ¼ 1 (i.e., t ¼ j2 � j1 þ y1 � y2)

It can be shown that the pipe is always stable in this case, and hence no parametric resonances can take place.

Comparing expressions (A.12) and (A.15) with expression (27) in the paper by Ariaratnam and Namachchivaya

(1986), it is easy to see that they are identical if we note the following correspondence between the notations in two

papers
Present paper
 Paper by Ariaratnam and Namachchivaya (1986)
o
 n

m, or
 m, or
Ur, Vr
 Urr, Vrr
L1, L2
 B11, B22

U12, U21, V12, V21
 U12, U21, V12, V21
B
 U12U21 þ V12V21
We see also that inequality (A.24) above and inequality (37) in the paper by Ariaratnam and Namachchivaya (1986)

are, in fact, equivalent. If both sides in the latter expression are squared, we can easily derive from the resulting

expression the identical inequality as (A.24).
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